6.3 Completed Notes

6.3: Multiplication and Division of Rational Numbers

Definition: If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers, ther $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$ Example: Draw a figure to represent $\frac{3}{8}$.

Example: Calculate
$$\frac{27}{62} \cdot \frac{8}{54}$$

Example: Calculate $\frac{18}{44} \cdot \frac{55}{27}$

Fact: The rational numbers over multiplication have the closure, commutative, and associative properites. The following properties also hold.

Identity

Inverse:

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a} \cdot \frac{a}{b} = 1 \quad (\frac{a}{b} \neq 0)$$
Zero Multiplication Property: $0 \cdot \frac{a}{b} = \frac{a}{b} \cdot 0 = 0$

Distributive: $\frac{\alpha}{b} \cdot (\frac{c}{d} + \frac{e}{d}) = \frac{\alpha}{b} \cdot \frac{c}{d} + \frac{\alpha}{b} \cdot \frac{e}{d}$

Example: Calculate the following.

$$= (3 + \frac{1}{3})(3 + \frac{1}{3})$$

$$= (3 + \frac{1}{3})(3 + \frac{1}{3})$$

$$= 3 \cdot 3 + 3 \cdot \frac{1}{3} + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot \frac{1}{3}$$

$$= 9 + | + | + \frac{1}{9} \cdot 1 | \frac{1}{9} = \frac{100}{9}$$

6.3 Completed Notes

Definition: If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers with $\frac{c}{d} \neq 0$, then $\frac{a}{b} \div \frac{c}{d}$ is the unique rational number $\frac{e}{f}$ such that $\frac{c}{d} \cdot \frac{e}{f} = \frac{a}{b}$.

We will not be studying a model for this in class, but look at $p.\,390$ for some ideas of how to teach this.

Example: Show that
$$\frac{2}{3} \div \frac{3}{4} = \frac{8}{9}$$
. because $\frac{2}{4} \times \frac{8}{9} = \frac{2}{3}$

$$\frac{2}{4} \times 0 = \frac{2}{3}$$

$$\frac{2}{4} \times \frac{8}{9} = \frac{2}{3}$$

Example: Show that $\frac{2}{3} \div \frac{3}{4} = 8$

Theorem: If $\frac{a}{b}$ and $\frac{c}{d}$ are any rational numbers and $\frac{c}{d} \neq 0$, then $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}.$ Respectively.

Example: Compute $\frac{4}{5} \div \frac{12}{5}$ using Keep Change Flip with one of the explanations from before.

$$\frac{4}{5} : \frac{12}{5} = n$$
Then $\frac{12}{5} = n = \frac{4}{5} : \frac{5}{12}$
 $n = \frac{4}{5} : \frac{8}{12} = \frac{1}{3}$

$$\frac{3}{4} - \frac{3}{8}$$

$$= \frac{3}{4} \cdot \frac{3}{8} = \frac{3}{4} \cdot \frac{3}{3} = 2$$